Multiple amplified microRNAs monitoring in living cells based on fluorescence quenching of Mo2B and hybridization chain reaction.

Biosensors & bioelectronics(2021)

引用 11|浏览17
暂无评分
摘要
Imaging intracellular microRNAs (miRNAs) demonstrated an essential role in exposing their biological and pathological functions. However, the detection of sequence-specific miRNAs in living cells remains a key challenge. Herein, a facile amplified multiple intracellular miRNAs imaging platform was constructed based on Mo2B nanosheets (NSs) fluorescence (FL) quenching and hybridization chain reaction (HCR). The Mo2B NSs demonstrated strong interaction with the hairpin probes (HPs), ssDNA loop, and excellent multiple FL dyes quenching performance, achieving ultralow background signal. After transfection, the HPs recognized specific targets miRNAs, the corresponding HCR was triggered to produce tremendous DNA-miRNA duplex helixes, which dissociated from the surface of the Mo2B NSs to produce strong FL for miRNAs detection. It realized to image multiple miRNAs biomarkers in different cells to discriminate cancer cells from normal cells owing to the excellent sensitivity, and the regulated expression change of miRNAs in cancer cells was also successfully monitored. The facile and versatile Mo2B-based FL quenching platform open an avenue to profile miRNAs expression pattern in living cells, and has great applications in miRNAs based biological and biomedical research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要