Genomic insights of Acinetobacter baumannii ST374 reveal wide and increasing resistome and virulome.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases(2021)

引用 8|浏览1
暂无评分
摘要
WGS-based surveillance has significantly improved the ability to track global spread and emergence of multidrug-resistant clones of clinically relevant pathogens. In this study, we performed the genomic characterization and comparative analysis of an Acinetobacter baumannii (strain Ac56) belonging to the sequence type ST374, which was isolated for the first time in Brazil, in 1996. Genomic analysis of Ac56 predicted a total of 5373 genes, with 3012 being identical across nine genomes of A. baumannii isolates of ST374 from European, Asian, North and South American countries. GoeBURST analysis grouped ST374 lineages into clonal complex CC3 (international clone IC-III). Resistome analysis of ST374 clone predicted genes associated with resistance to heavy metals and clinically relevant beta-lactams and aminoglycosides antibiotics. In this regard, in two closely related A. baumannii strains, the intrinsic blaADC gene was linked to the insertion sequence ISAba1; including the Ac56 strain, where it has been possibly associated with intermediate susceptibility to meropenem. Other four carbapenem-resistant A. baumannii strains carried the ISAba1/blaOXA-23 gene array, which was associated with the transposon Tn2008 or with Tn2006 in an AbaR4-type resistance island. While most virulence genes were shared for A. baumannii strains of ST374, three isolates from Thailand harbored KL49 capsular loci, previously identified in the hypervirulent A. baumannii LAC-4 strain. Analysis of thirty-four predicted plasmids showed eight major groups, of which GR-6 (LN-1) and GR-2 (LN-2) were prevalent. All strains, including the earliest isolate Ac56 harbored at least one complete prophage, whereas none CRISPR-associated (cas) gene was detected. In summary, genomic data of A. baumannii ST374 reveal a potential of this lineage to become a successful clone.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要