Mechanically Constrained Catalytic Mn(Co)(3)Br Single Sites In A Two-Dimensional Covalent Organic Framework For Co2 Electroreduction In H2o

ACS CATALYSIS(2021)

引用 42|浏览11
暂无评分
摘要
The development of CO2 electroreduction (CO2RR) catalysts based on covalent organic frameworks (COFs) is an emerging strategy to produce synthetic fuels. However, our understanding on catalytic mechanisms and structure-activity relationships for COFs is still limited but essential to the rational design of these catalysts. Herein, we report a newly devised CO2 reduction catalyst by loading single-atom centers, {fac-Mn(CO)(3)S}, (S = Br, CH3CN, H2O), within a bipyridylbased COF (COFbpyMn). COFbpyMn shows a low CO2RR onset potential (eta = 190 mV) and high current densities (>12 mA.cm(-2), at 550 mV overpotential) in water. TOFCO and TONCO values are as high as 1100 h-1 and 5800 (after 16 h), respectively, which are more than 10-fold higher than those obtained for the equivalent manganese-based molecular catalyst. Furthermore, we accessed key catalytic intermediates within a COF matrix by combining experimental and computational (DFT) techniques. The COF imposes mechanical constraints on the {fac-Mn(CO)(3)S} centers, offering a strategy to avoid forming the detrimental dimeric Mn-0-Mn-0, which is a resting state typically observed for the homologous molecular complex. The absence of dimeric species correlates to the catalytic enhancement. These findings can guide the rational development of isolated single-atom sites and the improvement of the catalytic performance of reticular materials.
更多
查看译文
关键词
CO2 reduction, single atom catalysis, manganese, covalent organic framework, spectroelectrochemistry, mechanisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要