Microstructure And Properties Of Al-6.0mg-0.3sc Alloy Deposited By Double-Wire Arc Additive Manufacturing

3D PRINTING AND ADDITIVE MANUFACTURING(2022)

引用 7|浏览9
暂无评分
摘要
Al-6.0Mg-0.3Sc alloy deposits are prepared by means of a double-wire arc additive manufacturing process. The formation, porosity, metallographic structure, type of precipitated phase, and mechanical properties of the deposit are studied. Double-wire arc forming affords precision advantages over single-wire-arc forming, which is evidenced by the increased surface uniformity of the deposit. Compared with the deposit of single-wire-arc formed, the deposit of double-wire arc formed exhibits only fewer and smaller pores, and the lower process heat yields rapid solidification and tiny precipitate sizes. A larger amount of Mg and Mn is observed to be dissolved in the Al matrix of double-wire arc-formed deposit, which increases the alloy strength, and smaller primary Al3Sc phase, which exhibits excellent grain refinement. Furthermore, the presence of a high amount of Sc solid solution in the matrix of double-wire arc-formed deposit strengthens the alloy, and the melting of the rear wire "heat-treats" the substrate formed by the front wire, promotes secondary Al3Sc phase precipitation, and further strengthens the alloy. Compared with the deposit of single-wire-arc formed, the mechanical properties of double-wire arc-formed deposit show an improvement: the tensile strength, yield strength, and elongation of the horizontally oriented specimens are estimated as 363 MPa, 258 MPa, and 26%, respectively. This successful implementation of the cold metal transfer + pulse process to prepare Al-Mg alloy parts can pave the way to their industrial production. The proposed method can find wide utility in the fields of aviation, aerospace, military, and shipbuilding.
更多
查看译文
关键词
Al-Mg-Sc alloy, double-wire arc, additive manufacturing, microstructure, mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要