Volumetric Feature-Based Alzheimer'S Disease Diagnosis From Smri Data Using A Convolutional Neural Network And A Deep Neural Network

IEEE ACCESS(2021)

引用 35|浏览0
暂无评分
摘要
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is mostly prevalent in people older than 65 years. The hippocampus is a widely studied region of interest (ROI) for a number of reasons, such as memory function analysis, stress development observation and neurological disorder investigation. Moreover, hippocampal volume atrophy is known to be linked with Alzheimer's disease. On the other hand, several biomarkers, such as amyloid beta (a beta(42)) protein, tau, phosphorylated tau and hippocampal volume atrophy, are being used to diagnose AD. In this research work, we have proposed a method to diagnose AD based on slice-wise volumetric features extracted from the left and right hippocampi of structural magnetic resonance imaging (sMRI) data. The proposed method is an aggregation of a convolutional neural network (CNN) model with a deep neural network (DNN) model. The left and right hippocampi have been localized automatically using a two-stage ensemble Hough-CNN. The localized hippocampal positions are used to extract (80 x 80x80 voxels) 3-D patches. The 2-D slices are then separated from the 3-D patches along axial, sagittal, and coronal views. The pre-processed 2-D patches are used to extract volumetric features from each slice by using a discrete volume estimation convolutional neural network (DVE-CNN) model. The extracted volumetric features have been used to train and test the classification network. The proposed approach has achieved average weighted classification accuracies of 94.82% and 94.02% based on the extracted volumetric features attributed to the left and right hippocampi, respectively. In addition, it has achieved area under the curve (AUC) values of 92.54% and 90.62% for the left and right hippocampi, respectively. Our method has outperformed the other methods by a certain margin in the same dataset.
更多
查看译文
关键词
Hippocampus, volumetric features, 2-D/3-D patches, hough-CNN, CNN, DNN, MRI, Alzheimer's disease, classification, knowledge transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要