Siting renewable power generation assets with combinatorial optimisation

Optimization Letters(2021)

引用 4|浏览16
暂无评分
摘要
This paper studies the problem of siting renewable power generation assets using large amounts of climatological data while accounting for their spatiotemporal complementarity. The problem is cast as a combinatorial optimisation problem selecting a pre-specified number of sites so as to minimise the number of simultaneous low electricity production events that they experience relative to a pre-specified reference production level. It is shown that the resulting model is closely related to submodular optimisation and can be interpreted as generalising the well-known maximum coverage problem. Both deterministic and randomised algorithms are discussed, including greedy, local search and relaxation-based heuristics as well as combinations of these algorithms. The usefulness of the model and methods is illustrated by a realistic case study inspired by the problem of siting onshore wind power plants in Europe, resulting in instances featuring over ten thousand candidate locations and ten years of hourly-sampled meteorological data. The proposed solution methods are benchmarked against a state-of-the-art mixed-integer programming solver and several algorithms are found to consistently produce better solutions at a fraction of the computational cost. The physical nature of solutions provided by the model is also investigated, and all deployment patterns are found to be unable to supply a constant share of the electricity demand at all times. Finally, a cross-validation analysis shows that, except for an edge case, the model can successfully and reliably identify deployment patterns that perform well on previously unseen climatological data from historical data spanning a small number of weather years.
更多
查看译文
关键词
Coverage problems,Submodular maximisation,Combinatorial optimisation,Renewable energy,Asset siting,Resource complementarity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要