Instant Flim Enables 4d In Vivo Lifetime Imaging Of Intact And Injured Zebrafish And Mouse Brains

OPTICA(2021)

引用 12|浏览0
暂无评分
摘要
Traditional fluorescence microscopy is blind to molecular microenvironment information that is present in a fluorescence lifetime, which can be measured by fluorescence lifetime imaging microscopy (FLIM). However, most existing FLIM techniques are slow to acquire and process lifetime images, difficult to implement, and expensive. Here we present instant FLIM, an analog signal processing method that allows real-time streaming of fluorescence intensity, lifetime, and phasor imaging data through simultaneous image acquisition and instantaneous data processing. Instant FLIM can be easily implemented by upgrading an existing two-photon microscope using cost-effective components and our open-source software. We further improve the functionality, penetration depth, and resolution of instant FLIM using phasor segmentation, adaptive optics, and super-resolution techniques. We demonstrate through-skull intravital 3D FLIM of mouse brains to depths of 300 mu m and present the first in vivo 4D FLIM of microglial dynamics in intact and injured zebrafish and mouse brains for up to 12 h. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要