Construction Of A Near-Natural Estuarine Wetland Evaluation Index System Based On Analytical Hierarchy Process And Its Application

WATER(2021)

引用 6|浏览2
暂无评分
摘要
Nutrients carried in upstream rivers to lakes are the main cause of eutrophication. Building near-natural estuarine wetlands between rivers and lakes is an effective way to remove pollutants and restore the ecology of estuarine areas. However, for the existing estuarine wetland ecological restoration projects, there is a lack of corresponding evaluation methods and index systems to make a comprehensive assessment of their restoration effects. By summarizing a large amount of literature and doing field research, an index system was constructed by combining the characteristics of the near-natural estuarine wetlands themselves. It covered environmental benefits, technical management and maintenance, and socio-economic functions, and contained 3 systems, 7 criteria, and 16 indicators. The analytical hierarchy process (AHP) was used to determine the weights of each indicator. The top 5 indicators in order of importance were habitat diversity, total phosphorus (TP), coverage of aquatic plants, ammonia nitrogen (NH3-N), and adaptation to the surrounding landscape. The above evaluation system was used for the comprehensive evaluation of the water purification project in the Fuhe estuarine wetland, Hebei Province, as an example. The results showed that the comprehensive score of the Fuhe estuarine wetland at this stage was 4.1492, and the evaluation grade was excellent. The effect of water purification and ecological restoration was good, and the selected technology was suitable and stable in operation. It had a greater positive impact on the surrounding economy and society and can be promoted and applied. The research results were important for clarifying the advantages and defects of the project and developing efficient and advanced restoration technologies.
更多
查看译文
关键词
Fuhe estuarine wetland, analytical hierarchy process, water purification, engineering evaluation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要