Phase constitution, microstructure and mechanical properties of a Ni-based superalloy specially designed for additive manufacturing

CHINA FOUNDRY(2021)

引用 6|浏览4
暂无评分
摘要
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ’, in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30–45 μm, and the average size of γ’ particles is 100–150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300–500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ’, and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.
更多
查看译文
关键词
additive manufacturing,laser metal deposition,Ni-based superalloy,tensile behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要