Changes in species abundances with short-term and long-term nitrogen addition are mediated by stoichiometric homeostasis

PLANT AND SOIL(2021)

引用 13|浏览1
暂无评分
摘要
Background Increasing nitrogen (N) deposition has altered plant communities globally, however the changes in species abundances with short-term vs. long-term N enrichment remains unclear. Stoichiometric homeostasis, quantified by the homoeostatic regulation coefficient ( H ) is a key trait predictive of plant species dominance and species responses to short-term global changes. It is unknown whether H changes with N enrichment over time, thereby affecting species responses to long-term N addition. Methods Here we investigated three representative plant species how species dominance changed to short-term and long-term N addition with a field N addition experiment (2006–2013) in an Inner Mongolia grassland. Changes in species H with long-term N addition were analyzed using a sand culture experiment, and the correlation between species H and species abundances were explored to address the above research gaps. Results The abundance of Leymus chinensis decreased with short-term N addition, and increased with long-term N addition, while Chenopodium glaucum exhibited the opposite pattern. Cleistogenes squarrosa was only favored by 1-year N addition, and depressed by two or more years of N addition. The H values of L. chinensis and C. glaucum decreased significantly with long-term N addition, but did not change for C. squarrosa . The H values were significantly related with the abundance both in Control and long-term N addition treatments. Conclusion Species abundance had opposite responses to short-term vs. long-term N addition. The decrease of H suggested the nutrients use strategy became more progressive, which mediated the responses of species abundances to short- and long-term N addition.
更多
查看译文
关键词
Ecological stoichiometry, Global change, Ecosystem structure, Plant functional traits, Species dominance, Grassland ecosystems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要