Freshly Thawed Cryobanked Human Neural Stem Cells Engraft within Endogenous Neurogenic Niches and Restore Cognitive Function after Chronic Traumatic Brain Injury

JOURNAL OF NEUROTRAUMA(2021)

引用 4|浏览0
暂无评分
摘要
Human neural stem cells (hNSCs) have potential as a cell therapy after traumatic brain injury (TBI). While various studies have demonstrated the efficacy of NSCs from ongoing culture, there is a significant gap in our understanding of freshly thawed cells from cryobanked stocks-a more clinically relevant source. To address these shortfalls, the therapeutic potential of our previously validated Shef-6.0 human embryonic stem cell (hESC)-derived hNSC line was tested after long-term cryostorage and thawing before transplant. Immunodeficient athymic nude rats received a moderate unilateral controlled cortical impact (CCI) injury. At four weeks post-injury, 6 x 10(5) freshly thawed hNSCs were transplanted into six injection sites (two ipsi- and four contra-lateral) with 53.4% of cells surviving three months post-transplant. Interestingly, most hNSCs were engrafted in the meninges and the lining of lateral ventricles, associated with high CXCR4 expression and a chemotactic response to SDF1alpha (CXCL12). While some expressed markers of neuron, astrocyte, and oligodendrocyte lineages, the majority remained progenitors, identified through doublecortin expression (78.1%). Importantly, transplantation resulted in improved spatial learning and memory in Morris water maze navigation and reduced risk taking in an elevated plus maze. Investigating potential mechanisms of action, we identified an increase in ipsilateral host hippocampus cornu ammonis (CA) neuron survival, contralateral dentate gyrus (DG) volume, and DG neural progenitor morphology as well as a reduction in neuroinflammation. Together, these findings validate the potential of hNSCs to improve function after TBI and demonstrate that long-term biobanking of cells and thawing aliquots before use may be suitable for clinical deployment.
更多
查看译文
关键词
chronic traumatic brain injury,human neural stem cells,immunomodulation,hippocampal neurogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要