Adhesion And Growth Of Adipose Tissue-Derived Stem Cells On Fibrin Assemblies With Attached Growth Factors For Tissue Engineering Of Heart Valves

10TH ANNIVERSARY INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2018 (R))(2019)

引用 0|浏览4
暂无评分
摘要
Currently used xenogeneic biological heart valve prostheses are decellularized and crosslinked with glutaraldehyde. These grafts usually undergo degeneration and calcification. Pericardium-based heart valve prostheses, re-seeded with autologous cells, i.e. adipose tissue-derived cells (ASCs) and endothelial cells, could have longer durability and biocompatibility. In order to improve the adhesion of cells and their ingrowth into decellularized pericardium, various fibrin (Fb) layers were developed, i.e. Fb, Fb with covalently bound heparin (H), Fb with either vascular endothelial growth factor (VEGF) or fibroblast growth factor 2 (FGF) in various concentrations (1 ng/ml, 10 ng/ml, 100 ng/ml) or with both VEGF and FGF (100 ng/ml). Growth factors were attached onto Fb via heparin or were adsorbed. ASCs were seeded on theses layers in a DMEM medium supplemented with 2 % of fetal bovine serum, TGF beta 1 and BMP-4 (both 2.5 ng/ml), and with ascorbic acid. Cell adhesion and growth/viability was assessed by counted cell number/MTS evaluation. ASCs were stained for differentiation markers of smooth muscle cells, such as alpha-actin, calponin, and myosin heavy chain. On day 7, ASCs on Fb_H_VEGF layers produced both calponin and alpha-actin. An increased FGF concentration caused reduced calponin staining of ASCs. Lack of heparin in fibrin assemblies with growth factors inhibited the production of both alpha-actin and calponin in ASCs. The highest ASCs density/viability was found on Fb_H_VEGF_FGF layer. The proper formulation of fibrin coatings could be favorable for ASCs growth and differentiation and could subsequently support endothelialization of cardiovascular prostheses with endothelial cells.
更多
查看译文
关键词
Adipose tissue-derived stem cells, heart valves, fibrin assemblies, growth factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要