Continuous wave high-power laser propagation in water is affected by strong thermal lensing and thermal blooming already at short distances

SCIENTIFIC REPORTS(2021)

引用 2|浏览5
暂无评分
摘要
When laser beams propagate through media with non-vanishing absorption, the media is heated resulting in a change of the refractive index, which can lead to thermal lensing and thermal blooming. However, experimental details about both phenomena for propagations in water are lacking, especially for high-power lasers in the kilowatt range. We show that significant thermal lensing occurs only for high input powers before the onset of convective flow, while for low input powers, no strong thermal lens arises. After the onset of water flow, thermal blooming occurs at low input powers comparable to that known for propagations over kilometres in the air. However, for high input powers a thermal blooming on a qualitatively higher level is shown. By wavefront sensing, the change of refractive index distribution in water is investigated. This clearly shows the fast development of a strong thermal lens for high input powers and the onset of convection. Furthermore, a qualitatively good agreement of the accompanying simulations is observed. It is found that the absorption coefficient is linear with a value of μ =13.7 m^-1 at least up to 7.5 kW, i.e. 8 kW/cm^2 . However, the directed transmission into an aperture is only constant before any thermal lensing of blooming occurs.
更多
查看译文
关键词
Applied physics,Fluid dynamics,Imaging and sensing,Laser material processing,Optical physics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要