Modelling the coupling of the M-clock and C-clock in lymphatic muscle cells

COMPUTERS IN BIOLOGY AND MEDICINE(2021)

引用 5|浏览4
暂无评分
摘要
Lymphoedema develops due to chronic dysfunction of the lymphatic vascular system which results in fluid accumulation between cells. The condition is commonly acquired secondary to diseases such as cancer or the therapies associated with it. The primary driving force for fluid return through the lymphatic vasculature is provided by contractions of the muscularized lymphatic collecting vessels, driven by electrical oscillations. However, there is an incomplete understanding of the molecular and bioelectric mechanisms involved in lymphatic muscle cell excitation, hampering the development and use of pharmacological therapies. Modelling in silico has contributed greatly to understanding the contributions of specific ion channels to the cardiac action potential, but modelling of these processes in lymphatic muscle remains limited. Here, we propose a model of oscillations in the membrane voltage (M-clock) and intracellular calcium concentrations (C-clock) of lymphatic muscle cells. We modify a model by Imtiaz and colleagues to enable the M-clock to drive the C-clock oscillations. This approach differs from typical models of calcium oscillators in lymphatic and related cell types, but is required to fit recent experimental data. We include an additional voltage dependence in the gating variable control for the L-type calcium channel, enabling the M-clock to oscillate independently of the C-clock. We use phase-plane analysis to show that these M-clock oscillations are qualitatively similar to those of a generalised FitzHugh-Nagumo model. We also provide phase plane analysis to understand the interaction of the M-clock and C-clock oscillations. The model and methods have the potential to help determine mechanisms and find targets for pharmacological treatment of lymphoedema. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
Electrochemical model,Cellular oscillator,Action potential,Pace-making,Lymph transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要