Improved antibody structure prediction by deep learning of side chain conformations

biorxiv(2021)

引用 1|浏览8
暂无评分
摘要
Antibody engineering is becoming increasingly popular in medicine for the development of diagnostics and immunotherapies. Antibody function relies largely on the recognition and binding of antigenic epitopes via the loops in the complementarity determining regions. Hence, accurate high-resolution modeling of these loops is essential for effective antibody engineering and design. Deep learning methods have previously been shown to effectively predict antibody backbone structures described as a set of inter-residue distances and orientations. However, antigen binding is also dependent on the specific conformations of surface side chains. To address this shortcoming, we created DeepSCAb: a deep learning method that predicts inter-residue geometries as well as side chain dihedrals of the antibody variable fragment. The network requires only sequence as input, rendering it particularly useful for antibodies without any known backbone conformations. Rotamer predictions use an interpretable self-attention layer, which learns to identify structurally conserved anchor positions across several species. We evaluate the performance of our model for discriminating near-native structures from sets of decoys and find that DeepSCAb outperforms similar methods lacking side chain context. When compared to alternative rotamer repacking methods, which require an input backbone structure, DeepSCAb predicts side chain conformations competitively. Our findings suggest that DeepSCAb improves antibody structure prediction with accurate side chain modeling and is adaptable to applications in docking of antibody-antigen complexes and design of new therapeutic antibody sequences. ### Competing Interest Statement Dr. Gray is an unpaid board member of the Rosetta Commons. Under institutional participation agreements between the University of Washington, acting on behalf of the Rosetta Commons, Johns Hopkins University may be entitled to a portion of revenue received on licensing Rosetta software including methods discussed/developed in this study. As a member of the Scientific Advisory Board, J.J.G. has a financial interest in Cyrus Biotechnology. Cyrus Biotechnology distributes the Rosetta software, which may include methods developed in this study. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies.
更多
查看译文
关键词
improved antibody structure prediction,deep learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要