Somatic HCN channels augment and speed up GABAergic basket cell input-output function in human neocortex

biorxiv(2021)

引用 1|浏览4
暂无评分
摘要
Neurons in the mammalian brain exhibit evolution-driven species-specific differences in their functional properties. Therefore, understanding the human brain requires unraveling the human neuron “uniqueness” and how it contributes to the operation of specific neuronal circuits. We show here that a highly abundant type of inhibitory neurons in the neocortex, GABAergic parvalbumin-expressing basket cell (pv+BC), exhibits in the human brain a specific somatic leak current mechanism, which is absent in their rodent neuronal counterparts. Human pv+BC soma shows electric leak conductance mediated by hyperpolarization-activated cyclic nucleotide-gated channels. This leak conductance has depolarizing effects on the resting membrane potential and it accelerates the rise of synaptic potentials in the cell soma. The leak facilitates the human pv+BC input-to-output fidelity and shortens the action potential generation to excitatory inputs. This mechanism constitutes an adaptation that enhances signal transmission fidelity and speed in the common inhibitory circuit in the human but not in the rodent neocortex. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要