Engineered Peptide-Functionalized Hydrogels Modulate the RNA Transcriptome of Human Nucleus Pulposus Cells In Vitro

biorxiv(2021)

引用 1|浏览5
暂无评分
摘要
Degeneration and aging of the nucleus pulposus (NP) of the intervertebral disc (IVD) is accompanied by alterations in NP cell phenotype marked by a shift towards a fibroblast-like, catabolic state. We have recently demonstrated an ability to manipulate the phenotype of human adult degenerative NP cells through 2D culture upon poly(ethylene glycol) (PEG) based hydrogels dually functionalized with integrin- and syndecan-binding laminin-mimetic peptides (LMPs). In the present study, we sought to understand the transcriptomic changes elicited through NP cell interactions with the LMP-functionalized hydrogel system (LMP gel) by examining targets of interest a priori and by conducting unbiased analysis to identify novel mechanosensitive targets. The results of gene specific analysis demonstrated that the LMP gel promoted adult degenerative NP cells to upregulate 148 genes including several NP markers (e.g. NOG and ITGA6) and downregulate 277 genes, namely several known fibroblastic markers. Additionally, 13 genes associated with G protein-coupled receptors, many of which are known drug targets, were identified as differentially regulated following culture upon the gel. Furthermore, through gene set enrichment analysis we identified over 700 pathways enriched amongst the up- and downregulated genes including pathways related to cell differentiation, notochord morphogenesis, and intracellular signaling. Together these findings demonstrate the global mechanobiological effects induced by the LMP gel and confirm the ability of this substrate to modulate NP cell phenotype. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要