Integration of spatial transcriptomic and single cell sequencing identifies expression patterns underlying immune and epithelial cell cross-talk in acute kidney injury

biorxiv(2021)

引用 1|浏览12
暂无评分
摘要
Despite important advances in studying experimental and clinical acute kidney injury (AKI), the pathogenesis of this disease remains incompletely understood. Single cell sequencing studies have closed this knowledge gap by characterizing the transcriptomic signature of different cell types within the kidney. However, the spatial distribution of injury can be regional and affect cells heterogeneously. We first optimized coordination of spatial transcriptomics and single nuclear sequencing datasets, mapping 30 dominant cell types to a human nephrectomy sample. The predicted cell type spots corresponded with the underlying hematoxylin and eosin histopathology. To study the implications of acute kidney injury on the distribution of transcript expression, we then characterized the spatial transcriptomic signature of two murine AKI models: ischemia reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were found associated with tissue injury pathways. Using single cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. As expected, neutrophils infiltrated the renal medullary outer stripe in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubule cells. In the CLP model, infiltrating macrophages dominated the outer cortical signature and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by inDEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing can aid in uncovering the mechanisms driving immune cell infiltration and allow detection of relevant subpopulations in single cell sequencing. The complementarity of these technologies facilitates the development of a transcriptomic kidney atlas in health and disease. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
single cell,cross-talk
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要