Comprehensive multi-omics study of the molecular perturbations induced by simulated diabetes on coronary artery endothelial cells

biorxiv(2021)

引用 0|浏览8
暂无评分
摘要
Coronary artery endothelial cells (CAEC) exert an important role in the development of cardiovascular disease. Dysfunction of CAEC is associated with cardiovascular disease in subjects with type 2 diabetes mellitus (T2DM). However, comprehensive studies of the effects that a diabetic environment exerts on this cellular type scarce. The present study characterized the molecular perturbations occurring on cultured bovine CAEC subjected to a prolonged diabetic environment (high glucose [HG] and high insulin [HI]). Changes at the metabolite and peptide level were assessed by untargeted metabolomics and chemoinformatics, and the results were integrated with proteomics data using published SWATH-based proteomics on the same in vitro model. Our findings were consistent with reports on other endothelial cell types, but also identified novel signatures of DNA/RNA, aminoacid, peptide, and lipid metabolism in cells under a diabetic environment. Manual data inspection revealed disturbances on tryptophan catabolism and biosynthesis of phenylalanine-based, glutathione-based, and proline-based peptide metabolites. Fluorescence microscopy detected an increase in binucleation in cells under treatment that also occurred when human CAEC were used. This multi-omics study identified particular molecular perturbations in an induced diabetic environment that could help unravel the mechanisms underlying the development of cardiovascular disease in subjects with T2DM. ### Competing Interest Statement Dr. Villarreal is a co-founder and stockholder of Cardero Therapeutics, Inc.
更多
查看译文
关键词
endothelial,diabetes,molecular perturbations,multi-omics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要