A WD40 repeat-like protein pathway connects F-BOX STRESS INDUCED (FBS) proteins to the NIGT1.1 transcriptional repressor in Arabidopsis

biorxiv(2020)

引用 0|浏览1
暂无评分
摘要
SCF-type E3 ubiquitin ligases use F-box (FBX) proteins as interchangeable substrate adaptors to recruit protein targets for ubiquitylation. FBX proteins almost universally have structure with two domains. A conserved N-terminal F-box domain interacts with a SKP protein and connects the FBX protein to the core SCF complex, while a C-terminal domain interacts with the protein target and facilitates recruitment. The F-BOX STRESS INDUCED (FBS) subfamily of four plant FBX proteins has atypical domain structure, however, with a centrally located F-box domain and additional conserved regions at both the N- and C-termini. FBS proteins have been linked to environmental stress networks, but no ubiquitylation target(s) or exact biological function has been established for this subfamily. We have identified two WD40 repeat-like proteins in Arabidopsis that are highly conserved in plants and interact with FBS proteins, which we have named FBS INTERACTING PROTEINs (FBIPs). FBIPs interact exclusively with the N-terminus of FBS proteins, and this interaction occurs in the nucleus. FBS1 destabilizes FBIP1, consistent with FBIPs being ubiquitylation targets of SCFFBS complexes. Furthermore, we found that FBIP1 interacts with NIGT1.1, a GARP-type transcriptional repressor that regulates nitrate and phosphate starvation signaling and responses. Collectively, these interactions between FBS, FBIP, and NIGT1.1 proteins delineate a previously unrecognized SCF-connected transcription regulation module that works in the context of phosphate and nitrate starvation, and possibly other environmental stresses. Importantly, this work also identified two uncharacterized WD40 repeat-like proteins as new tools with which to probe how an atypical SCF complex, SCFFBS, functions via FBX protein N-terminal interaction events. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
transcriptional repressor,pathway,proteins,repeat-like,f-box
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要