Prediction of occupational exposure limits for noise-induced non-auditory effects

APPLIED ERGONOMICS(2022)

引用 11|浏览9
暂无评分
摘要
There is a recent trend to place more emphasis on noise non-auditory effects. Despite its implications on health, there is a lack of recommendations for noise in occupational settings. This study aimed to present occupational exposure limits for noise-induced non-auditory effects in healthy males using empirical exposure-response regression models based on the data of laboratory and field considering the effective variables. To this end, the equivalent noise level was measured and recorded in four working settings including closed offices, openplan offices, control rooms, and industrial workplaces during a normal working day. They were 65, 68, 73, and 80dB(A), respectively. In the laboratory, 31 healthy males were exposed to five noise conditions (four noisy conditions and one quiet) during 8 h and they were asked to perform the cognitive tests. In the field phase, 124 healthy males were also examined from four working settings in their workstations for 8 h. The psychophysiological parameters of the participants were recorded in both lab and field. The results indicated variations in mental responses at levels above 55dBA, and psychophysiological variations at levels above 70dB(A) in both phases. The findings also showed that the developed regression models could plausibly predict the noise-induced psychophysiological responses during exposure to noise levels; thus, they can be presented the likely exposure limits. Based on the results of the models, the levels <55dB(A) are likelihood of the acoustic comfort limit, and the levels ranged from 55 to 65dB(A) are the acoustic safe limits. The acoustic caution limit is the likelihood of the levels ranged from 65 to 75dB(A). The levels ranged from 75 to 80dB(A) are likely the action levels or control limits, and the occupational exposure limit are the probability of levels> 80dB(A).
更多
查看译文
关键词
Occupational exposure limits, Non-auditory effects, Prediction models, Occupational noise
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要