Transcriptome analysis of 3D primary mouse liver spheroids shows that long-term exposure to hexafluoropropylene oxide trimer acid disrupts hepatic bile acid metabolism.

The Science of the total environment(2021)

引用 15|浏览6
暂无评分
摘要
Hexafluoropropylene oxide trimer acid (HFPO-TA), an alternative to perfluorooctanoic acid (PFOA), has been detected in various environmental and human matrices. However, information regarding its toxicity remains limited. Here, we established a three-dimensional (3D) primary mouse liver spheroid model to compare the hepatotoxicity of HFPO-TA and PFOA. The 3D spheroids were repeatedly exposed to 25-, 50-, or 100-μM HFPO-TA and PFOA for 28 d. Compared with the PFOA groups, the HFPO-TA groups showed higher bioaccumulation potential, higher lactate dehydrogenase (LDH) leakage, and lower adenosine triphosphate (ATP), albumin, and urea secretion. Transcriptome analysis identified 1603 and 772 differentially expressed genes in the 100-μM HFPO-TA- and PFOA-treated groups, respectively. Bioinformatics analysis indicated that cholesterol metabolism, bile acid metabolism, and inflammatory response were significantly altered. Exposure to 100-μM HFPO-TA increased triglyceride content but decreased total cholesterol content, while no changes were observed in the 100-μM PFOA-treated group. Total bile acids in the re-polarized 3D spheroids increased significantly after 100-μM HFPO-TA and PFOA treatment, which did not affect bile acid synthesis but inhibited the expression levels of Bsep and Mrp2 related to bile acid transport. Thus, HFPO-TA exhibited more serious hepatotoxicity than PFOA in 3D primary liver spheroids and may not be a safe alternative.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要