Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods.

International Conference on Learning Representations (ICLR)(2022)

引用 45|浏览130
暂无评分
摘要
Graph Neural Networks (GNNs) have achieved state of the art performance in node classification, regression, and recommendation tasks. GNNs work well when high-quality and rich connectivity structure is available. However, this requirement is not satisfied in many real world graphs where the node degrees have power-law distributions as many nodes have either fewer or noisy connections. The extreme case of this situation is a node may have no neighbors at all, called Strict Cold Start (SCS) scenario. This forces the prediction models to rely completely on the node's input features. We propose Cold Brew to address the SCS and noisy neighbor setting compared to pointwise and other graph-based models via a distillation approach. We introduce feature-contribution ratio (FCR), a metric to study the viability of using inductive GNNs to solve the SCS problem and to select the best architecture for SCS generalization. We experimentally show FCR disentangles the contributions of various components of graph datasets and demonstrate the superior performance of Cold Brew on several public benchmarks and proprietary e-commerce datasets. The source code for our approach is available at: https://github.com/amazon-research/gnn-tail-generalization.
更多
查看译文
关键词
Graph Neural Networks,Cold Start,Knowledge Distillation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要