CALMODULIN-LIKE-38 and PEP1 RECEPTOR 2 integrate nitrate and brassinosteroid signals to regulate root growth

PLANT PHYSIOLOGY(2021)

引用 17|浏览3
暂无评分
摘要
Plants exhibit remarkable developmental plasticity, enabling them to adapt to adverse environmental conditions such as low nitrogen (N) in the soil. Brassinosteroids (BRs) promote root foraging for nutrients under mild N deficiency, but the crosstalk between the BR- and N-signaling pathways in the regulation of root growth remains largely unknown. Here, we show that CALMODULIN-LIKE-38 (CML38), a calmodulin-like protein, specifically interacts with the PEP1 RECEPTOR 2 (PEPR2), and negatively regulates root elongation in Arabidopsis (Arabidopsis thaliana) in response to low nitrate (LN). CML38 and PEPR2 are transcriptionally induced by treatments of exogenous nitrate and BR. Compared with Col-0, the single mutants cml38 and pepr2 and the double mutant cml38 pepr2 displayed enhanced primary root growth and produced more lateral roots under LN. This is consistent with their higher nitrate absorption abilities, and their stronger expression of nitrate assimilation genes. Furthermore, CML38 and PEPR2 regulate common downstream genes related to BR signaling, and they have positive roles in BR signaling. Low N facilitated BR signal transmission in Col-0 and CML38- or PEPR2-overexpressing plants, but not in the cml38 and pepr2 mutants. Taken together, our results illustrate a mechanism by which CML38 interacts with PEPR2 to integrate LN and BR signals for coordinating root development to prevent quick depletion of N resources in Arabidopsis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要