Parkinson’s disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input

biorxiv(2019)

引用 0|浏览3
暂无评分
摘要
Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson’s disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In PD patients, we demonstrate that a subset of STN neurons are strongly and selectively sensitive to fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to full range of instantaneous amplitude. In rats, we probed the frequency response of STN neurons more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40Hz) and constant amplitude. In both healthy and dopamine-depleted animals, only beta-frequency stimulation selectively led to a progressive reduction in the variability of spike timing through the stimulation train. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要