In-vitro 3D modelling for charged particle therapy – Uncertainties and opportunities

Advanced Drug Delivery Reviews(2021)

引用 5|浏览0
暂无评分
摘要
Radiation therapy is a critical component of oncologic management, with more than half of all cancer patients requiring radiotherapy at some point during their disease course. Over the last decade, there has been increasing interest in charged particle therapy due to its advantageous physical and radiobiologic properties, with the therapeutic use of proton beam therapy (PBT) expanding worldwide. However, there remain large gaps in our knowledge of the radiobiologic mechanisms that underlie key aspects of PBT, such as variations in relative biologic effectiveness (RBE), radioresistance, DNA damage response and repair pathways, as well as immunologic effects. In addition, while the emerging technique of ultra-high dose rate or FLASH radiotherapy, with its potential to further reduce normal tissue toxicities, is an exciting development, in-depth study is needed into the postulated biochemical mechanisms that underpin the FLASH effect such as the oxygen depletion hypothesis as well as the relative contributions of immune responses and the tumor microenvironment. Further investigation is also required to ensure that the FLASH effect is not diminished or lost in PBT. Current methods to evaluate the biologic effects of charged particle therapy rely heavily on 2D cell culture systems and/or animal models. However, both of these methods have well-recognized limitations which limit translatability of findings from bench to bedside. The advent of novel three-dimensional in-vitro tumor models offers a more physiologically relevant and high throughput in-vitro system for the study of tumor development as well as novel therapeutic approaches such as PBT. Advances in 3D cell culture methods, together with knowledge of disease mechanism, biomarkers, and genomic data, can be used to design personalized 3D models that most closely recapitulate tumor microenvironmental factors promoting a particular disease phenotype, moving 3D models and PBT into the age of precision medicine.
更多
查看译文
关键词
Proton,PBT,Carbon ions,In-vitro 3D models,FLASH
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要