High Performance Asymmetric Supercapacitor Based on Hierarchical Carbon Cloth In Situ Deposited with h-WO3 Nanobelts as Negative Electrode and Carbon Nanotubes as Positive Electrode

MICROMACHINES(2021)

引用 4|浏览5
暂无评分
摘要
Urchin-like tungsten oxide (WO3) microspheres self-assembled with nanobelts are deposited on the surface of the hydrophilic carbon cloth (CC) current collector via hydrothermal reaction. The WO3 nanobelts in the urchin-like microspheres are in the hexagonal crystalline phase, and their widths are around 30-50 nm. The resulted hierarchical WO3/CC electrode exhibits a capacitance of 3400 mF/cm(2) in H2SO4 electrolyte in the voltage window of -0.5~0.2 V, which makes it an excellent negative electrode for asymmetric supercapacitors. To improve the capacitive performance of the positive electrode and make it comparable with that of the WO3/CC electrode, both the electrode material and the electrolyte have been carefully designed and prepared. Therefore, the hydrophilic CC is further coated with carbon nanotubes (CNTs) to create a hierarchical CNT/CC electrode via a convenient flame synthesis method, and a redox-active electrolyte containing an Fe2+/Fe (3+) couple is introduced into the half-cell system as well. As a result, the high performance of the asymmetric supercapacitor assembled with both the asymmetric electrodes and electrolytes has been realized. It exhibits remarkable energy density as large as 403 mu W h/cm(2) at 15 mW/cm(2) and excellent cyclic stability after 10,000 cycles.

更多
查看译文
关键词
flame catalytic deposition, WO3 nanobelt, CNT, redox-active electrolyte, asymmetric supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要