Modifying superparamagnetic iron oxide and silica nanoparticles surfaces for efficient (MA)LDI-MS analyses of peptides and proteins

RAPID COMMUNICATIONS IN MASS SPECTROMETRY(2022)

引用 6|浏览2
暂无评分
摘要
Rationale: Surface functionalization is considered to be the foundation for developing nanomaterial applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses. However, the surface properties of nanostructures can influence their interaction with the analyte and consequently the mass data. In the present study, functionalized nanoparticles (NPs) were used for MALDI-MS and laser desorption/ionization mass spectrometry (LDI-MS) experiments in order to evaluate the effect of the surface properties of NPs on tailoring the intensity of mass signals. Methods: Regarding the LDI-MS analyses, the surface of superparamagnetic iron oxide nanoparticles (SPIONs) was coated with nitrosonium tetrafluoroborate, citric acid, nitrodopamine, and gallic acid. Additionally, the SPIONs were applied as a matrix to analyze three small peptides. In the MALDI-MS analyses, silica NPs were selected as co-matrix and functionalized with cysteine, sulfobetaine, and amine alkoxysilanes. Then, the silica NPs were utilized as additives in the MALDI-MS samples of four proteins in a mass range between similar to 2000 and 60,000 Da. Results: The results of LDI-MS analyses demonstrated more than one order enhancement in the signal intensity of analytes based on the amount of electrostatic interaction and laser energy absorption by the surface ligands. However, those of MALDI-MS experiments indicated a significant signal improvement when achieving the colloidal stability of silica NPs in the matrix solution. Conclusions: Based on the results, the surface properties of NPs affected the (MA) LDI-MS analyses indispensably. Finally, the functionalization of SPIONs represented a new model for the future development of NPs with both affinity and enhanced ionization abilities in mass spectrometry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要