Effects of Deep Cryogenic Treatment on the Microstructure and Properties of Rolled Cu Foil

MATERIALS(2021)

引用 5|浏览3
暂无评分
摘要
The development of fifth-generation (5G) communication and wearable electronics generates higher requirements for the mechanical properties of copper foil. Higher mechanical properties and lower resistance are required for flexible copper-clad laminate and high-frequency and high-speed Cu foil. Deep cryogenic treatment (DCT), as a post-treatment method, has many advantages, such as low cost and ease of operation. However, less attention has been paid to the impact of DCT on rolled Cu foil. In this study, the effects of DCT on the microstructure and mechanical properties of rolled Cu foil were investigated. The results show that as the treatment time increased, the tensile strength and hardness first increased and then decreased, reaching a peak value of 394.06 MPa and 1.47 GPa at 12 h. The mechanical property improvement of rolled Cu foil was due to the grain refinement and the increase of dislocation density. The dislocation density of rolled Cu foil after a DCT time of 12 h was determined to have a peak value of 4.3798 x 10(15) m(-2). The dislocation density increased by 19% and the grain size decreased by 12% after 12 h DCT.
更多
查看译文
关键词
rolled Cu foil, deep cryogenic treatment, microstructure, mechanical properties, corrosion resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要