The Role of Mitochondria-Linked Fatty-Acid Uptake-Driven Adipogenesis in Graves Orbitopathy

ENDOCRINOLOGY(2021)

引用 2|浏览22
暂无评分
摘要
Context: Depot-specific expansion of orbital adipose tissue (OAT) in Graves orbitopathy (GO; an autoimmune condition producing proptosis, visual impairment and reduced quality of life) is associated with fatty acid (FA)-uptake-driven adipogenesis in preadipocytes/fibroblasts (PFs). Objective:This work sought a role for mitochondria in OAT adipogenesis in GO. Methods: Confluent PFs from healthy OAT (OAT-H), OAT from GO (OAT-GO) and white adipose tissue in culture medium compared with culture medium containing a mixed hormonal cocktail as adipogenic medium (ADM), or culture-medium containing FA-supplementation, oleate:palmitate:linoleate (45:30:25%) with/without different concentration of mitochondrial biosubstrate adenosine 5'-diphosphate/guanosine 5'-diphosphate (ADP/GDP), AICAR (adenosine analogue), or inhibitor oligomycin-A for 17 days. Main outcome measures included oil-red-O staining and foci count of differentiated adipocytes for in vitro adipogenesis, flow cytometry, relative quantitative polymerase chain reaction, MTS-assay/10(6) cells, total cellular-ATP detection kit, and Seahorse-XFe96-Analyzer for mitochondria and oxidative-phosphorylation (OXPHOS)/glycolysis-ATP production analysis. Results: During early adipogenesis before adipocyte formation (days 0, 4, and7), we observed OAT-specific cellular ATP production via mitochondrial OXPHOS in PFs both from OAT-H and OAT-GO, and substantially disrupted OXPHOS-ATP/glycolysis-ATP production in PFs from OAT-GO, for example, a 40% reduction in OXPHOS-ATP and trend-increased glycolysis-ATP production on days 4 and 7 compared with day 0, which contrasted with the stable levels in OAT-H. FA supplementation in culture-medium triggered adipogenesis in PFs both from OAT-H and OAT-GO, which was substantially enhanced by 1-mM GDP reaching 7% to 18% of ADM adipogenesis. The FA-uptake-driven adipogenesis was diminished by oligomycin-A but unaffected by treatment with ADP or AICAR. Furthermore, we observed a significant positive correlation between FA-uptake-driven adipogenesis by GDP and the ratios of OXPHOS-ATP/glycolysis-ATP through adipogenesis of PFs from OAT-GO. Conclusion: Our study confirmed that FA uptake can drive OAT adipogenesis and revealed a fundamental role for mitochondria-OXPHOS in GO development, which provides potential for therapeutic interventions.
更多
查看译文
关键词
Graves orbitopathy, orbital adipose tissue, fatty acid uptake, adipogenesis, mitochondria OXPHOS, ATP production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要