Efficient and Economical Targeted Insertion in Plant Genomes via Protoplast Regeneration.

The CRISPR journal(2021)

引用 13|浏览32
暂无评分
摘要
Versatile genome editing can be facilitated by the insertion of DNA sequences into specific locations. Current protocols involving CRISPR and Cas proteins rely on low efficiency homology-directed repair or non-homologous end joining with modified double-stranded DNA oligonucleotides as donors. Our simple protocol eliminates the need for expensive equipment, chemical and enzymatic donor DNA modification, or plasmid construction by using polyethylene glycol-calcium to deliver non-modified single-stranded DNA oligonucleotides and CRISPR-Cas9 ribonucleoprotein into protoplasts. Plants regenerated via edited protoplasts achieved targeted insertion frequencies of up to 50% in and 13.6% in rapid cycling without antibiotic selection. Using a 60 nt donor containing 27 nt in each homologous arm, 6/22 regenerated plants showed targeted insertions, and one contained a precise insertion of a 6 bp III site. The inserted sequences were transmitted to the next generation and invite the possibility of future exploration of versatile genome editing by targeted DNA insertion in plants.
更多
查看译文
关键词
plant genomes,economical targeted insertion,regeneration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要