Shortened duration and reduced area of frozen soil in the Northern Hemisphere

The Innovation(2021)

引用 29|浏览6
暂无评分
摘要
The changes in near-surface soil freeze-thaw cycles (FTCs) are crucial to understanding the related hydrological and biological processes in terrestrial ecosystems under a changing climate. However, long-termdynamics of soil FTCs at the hemisphere scale and the underlying mechanisms are not well understood. In this study, the spatiotemporal patterns and main driving factors of soil FTCs across the Northern Hemisphere (NH) during 1979-2017 were analyzed using multisource data fusion and attribution approaches. Our results showed that the duration and the annual mean area of frozen soil in the NH decreased significantly at rates of 0.13 +/- 0.04 days/year and 4.9 x 104 km(2)/year, respectively, over the past 40 years. Theseweremainly because the date of frozen soil onset was significantly delayed by 0.1 +/- 0.02 days/year, while the end of freezing and onset of thawing were substantially advanced by 0.21 +/- 0.02 and 0.15 +/- 0.03 days/year, respectively. Moreover, the interannual FTC changes were more drastic in Eurasia than in North America, especially at mid-latitudes (30 degrees-45 degrees N) and in Arctic regions (>75 degrees N). More importantly, our results highlighted that near-surface air temperature (T-a) and snowpack are the main driving factors of the spatiotemporal variations in soil FTCs. Furthermore, our results suggested that the long-term dynamics of soil FTCs at the hemisphere scale should be considered in terrestrial biosphere models to reduce uncertainties in future simulations.
更多
查看译文
关键词
freeze-thaw cycles,frozen duration,air temperature,snow water equivalent,soil moisture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要