Synaptotagmin 7 Is Targeted To The Axonal Plasma Membrane Through Gamma-Secretase Processing To Promote Synaptic Vesicle Docking In Mouse Hippocampal Neurons

ELIFE(2021)

引用 15|浏览9
暂无评分
摘要
Synaptotagmin 7 (SYT7) has emerged as a key regulator of presynaptic function, but its localization and precise role in the synaptic vesicle cycle remain the subject of debate. Here, we used iGluSnFR to optically interrogate glutamate release, at the single-bouton level, in SYT7KO-dissociated mouse hippocampal neurons. We analyzed asynchronous release, paired-pulse facilitation, and synaptic vesicle replenishment and found that SYT7 contributes to each of these processes to different degrees. 'Zap-and-freeze' electron microscopy revealed that a loss of SYT7 diminishes docking of synaptic vesicles after a stimulus and inhibits the recovery of depleted synaptic vesicles after a stimulus train. SYT7 supports these functions from the axonal plasma membrane, where its localization and stability require both gamma-secretase-mediated cleavage and palmitoylation. In summary, SYT7 is a peripheral membrane protein that controls multiple modes of synaptic vesicle (SV) exocytosis and plasticity, in part, through enhancing activity-dependent docking of SVs.
更多
查看译文
关键词
iGluSnFR, hippocampus, Synaptotagmin 7, short-term synaptic plasticity, gamma secretase, zap-and-freeze, Mouse, Rat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要