Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis

SCIENCE IMMUNOLOGY(2021)

引用 2|浏览37
暂无评分
摘要
Dendritic cells (DCs) and macrophages are at the forefront of immune responses, modifying their transcriptional programs in response to their tissue environment or immunological challenge. Posttranslational modifications of histones, such as histone H3 lysine-27 trimethylation (H3K27me3) by the Polycomb repressive complex 2 (PRC2), are tightly associated with epigenetic regulation of gene expression. To explore whether H3K27me3 is involved in either the establishment or function of the mononuclear phagocyte system, we selectively deleted core components of PRC2, either EZH2 or SUZ12, in CD11c-expressing myeloid cells. Unexpectedly, EZH2 deficiency neither prevented the deposition and maintenance of H3K27me3 in DCs nor hindered DC/macrophage homeostasis. In contrast, SUZ12 deficiency markedly impaired the capacity of DCs and macrophages to maintain H3K27me3. SUZ12 ablation induced a rapid loss of the alveolar macrophage and Langerhans cell networks under both steady state and inflammatory conditions because these cells could no longer proliferate to facilitate their self-renewal. Despite the reduced H3K27me3, DC development and function were unaffected by SUZ12 ablation, suggesting that PRC2-mediated gene repression was dispensable for DC homeostasis. Thus, the role of SUZ12 highlights the fundamentally different homeostatic mechanisms used by tissue-resident myeloid cells versus DCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要