Accelerated immunosenescence, oxidation and inflammation lead to a higher biological age in COPD patients.

Experimental gerontology(2021)

引用 7|浏览9
暂无评分
摘要
Chronic obstructive pulmonary disease (COPD) is characterised by inflammatory and oxidative alterations in the lung and extrapulmonary compartments, through involvement of the immune system. Several leukocyte functions are health markers and good predictors of longevity, and high pro-inflammatory and oxidative states are related to more aged profiles. Here, we aimed to investigate the aging rate in terms of immunosenescence in COPD men with respect to healthy age-matched controls. Several neutrophil (adherence, chemotaxis, phagocytosis, superoxide anion stimulated production) and lymphocyte (adherence, chemotaxis, lymphoproliferation, natural killer activity) functions, cytokine concentrations released in response to lipopolysaccharide (tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, IL-10) and redox parameters (intracellular glutathione content, basal superoxide anion level) were assessed in circulating leukocytes of men with moderate and severe stages of COPD, and compared to healthy age-matched volunteers. The biological age or aging rate in each participant was determined using the values of leukocyte functions. The results indicated impairment of immune functions in COPD patients, both in innate and adaptive immunity, and higher pro-inflammatory and oxidative states in peripheral leukocytes than controls. In general, these changes were more remarkable at the severe stage of airway obstruction. Importantly, COPD patients were found to be aging at a faster rate than age-matched healthy counterparts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要