The role of XBP-1-mediated unfolded protein response in colorectal cancer progression-a regulatory mechanism associated with lncRNA-miRNA-mRNA network

CANCER CELL INTERNATIONAL(2021)

引用 5|浏览7
暂无评分
摘要
Background We aim to identify the expression and analyze the molecular action of dysregulated lncRNA-miRNA mediated by XBP-1 in colorectal cancer (CRC). Methods Here, we identified XBP-1-mediated dysregulated lncRNAs and miRNAs in CRC by bioinformatics analysis. The expression level of lncRNAs and miRNA was measured using quantitative real time PCR, and the expression of XBP-1, as well as apoptosis-related proteins, were detected by western blot. CCK-8 and TUNEL assays were performed to determine cell proliferation and apoptosis, respectively. Luciferase reporter assay was conducted to verify the binding relationship among lncRNA-miRNA-XBP-1. BALB/c nude mice were inoculated subcutaneously with HCT116 cells to establish tumor-bearing mice model. Histological analysis was carried out by HE staining and immunohistochemical staining. Results Six downregulated lncRNAs (SLFNL1-AS1, KCNQ1OT1, NEAT1, XIST, AC016876.2, AC026362.1), four dysregulated miRNAs (miR-500a-3p, miR-370-3p, miR-2467-3p, miR-512-3p) and upregulated XBP-1 were identified in CRC cell lines. Gain- and loss-of-function experiments showed that overexpression of KCNQ1OT1/XIST promoted cell proliferation and suppressed cell apoptosis. In addition, overexpression of KCNQ1OT1/XIST partly abolished the inhibitory effects of XBP-1u knockdown or tunicamycin, an activator of endoplasmic reticulum stress, on CRC cell viability loss and apoptosis. Furthermore, KCNQ1OT1/XIST aggravated tumor growth in vivo by regulating endoplasmic reticulum stress and cell apoptosis. Conclusions This study has constructed lncRNA-miRNA-mRNA networks based on XBP-1 in CRC, and disclosed the regulatory mechanism of action, providing a set of pivotal biomarkers for future molecular investigation and targeted treatment of CRC.
更多
查看译文
关键词
Colorectal cancer, XBP-1, Endoplasmic reticulum stress, KCNQ1OT1, XIST
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要