Thermal degradation of cyanidin-3-O-glucoside: Mechanism and toxicity of products.

Food chemistry(2021)

引用 6|浏览17
暂无评分
摘要
The thermal degradation behavior of cyanidin-3-O-gluoside (Cy3G) in nitrogen and air was studied using thermogravimetric analysis (TGA), thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography/mass spectrometry (Py-GCMS). The results show that the thermal degradation of Cy3G in nitrogen and in air can be divided into three steps. The total degradation rate was 63.09% in nitrogen and 99.42% in air, and the total activation energy (Ea) was 65.85 and 80.98 kJ·mol-1, respectively. The TG-FTIR analysis showed that Cy3G is significantly decomposed at 200-300 °C. The Py-GCMS analysis shows that the first step in the thermal degradation of Cy3G in nitrogen is the cleavage of glycosidic bonds to give cyanidin and glucoside. The glucoside and cyanidin then degrade further to give mainly low molecular weight compounds, together with furan derivatives, pyran derivatives and aromatic compounds. The phenols and furans found in the pyrolysis products are known to have a degree of toxicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要