Interlayer Interactions As Design Tool For Large-Pore Cofs

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2021)

引用 46|浏览9
暂无评分
摘要
Covalent organic frameworks (COFs) with a pore size beyond 5 nm are still rarely seen in this emerging field. Besides obvious complications such as the elaborated synthesis of large linkers with sufficient solubility, more subtle challenges regarding large-pore COF synthesis, including pore occlusion and collapse, prevail. Here we present two isoreticular series of large-pore imine COFs with pore sizes up to 5.8 nm and correlate the interlayer interactions with the structure and thermal behavior of the COFs. By adjusting interlayer interactions through the incorporation of methoxy groups acting as pore-directing "anchors", different stacking modes can be accessed, resulting in modified stacking polytypes and, hence, effective pore sizes. A strong correlation between stacking energy toward highly ordered, nearly eclipsed structures, higher structural integrity during thermal stress, and a novel, thermally induced phase transition of stacking modes in COFs was found, which sheds light on viable design strategies for increased structural control and stability in large-pore COFs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要