Analyzing Near-Infrared Electrochemiluminescence of Graphene Quantum Dots in Aqueous Media.

ANALYTICAL CHEMISTRY(2021)

引用 25|浏览0
暂无评分
摘要
Mechanisms of emissions, especially electrochemiluminescence (ECL), for graphene quantum dots (GQDs) are poorly understood, which makes near-infrared (NIR)-emitting GQDs difficult to create. To explore this poorly understood NIR ECL, two GQDs, nitrogen-doped GQDs (GQD-1) and nitrogen- and sulfur-doped ones (GQD-2), were prepared by a simple one-step solvothermal reaction with similar core structures but different surface states. The GQDs were analyzed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Photoluminescence results, with a comparable quantum efficiency of 13% to strong luminophores in aqueous media, suggested a mechanism that the emission mainly depends on the core structure while slightly adjusted by the heteroatom doping. ECL of GQD-2 dispersed in aqueous media with K2S2O8 as the coreactant was measured by means of ECL-voltage curves and ECL spectroscopy, demonstrating strong NIR emissions between 680 and 870 nm, with a high ECL efficiency of 13% relative to that of the Ru(bpy)32+/K2S2O8 system. Interestingly, ECL is generated by surface excited states emitting light at a much longer wavelength in the NIR region. The easily prepared GQD-2 has several advantages such as low cost and quite strong NIR-ECL in aqueous media, with which wide applications in biodetection are anticipated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要