Efficient degradation of refractory pollutant in a microbial fuel cell with novel hybrid photocatalytic air-cathode: Intimate coupling of microbial and photocatalytic processes.

Bioresource technology(2021)

引用 17|浏览4
暂无评分
摘要
A microbial fuel cell-photocatalysis system with a novel photocatalytic air-cathode (MFC-PhotoCat) was proposed for synergistic degradation of 2,4,6-trichlorophenol (TCP) with simultaneous electricity generation. Stable electricity generation of 350 mV was achieved during 130 days of operation. Besides, 50 mg L-1 TCP was completely degraded within 72 h, and the rate constant of 0.050 h-1 was 1.8-fold higher than MFC with air-cathode without N-TiO2 photocatalyst. Degradation pathway was proposed based on the intermediates detected and density functional theory (DFT) calculation, with two open-chain intermediates (2-chloro-4-keto-2-hexenedioic acid and hexanoic acid) detected. Furthermore, hierarchical cluster and PCoA revealed significant shifts of microbial community structures, with enriched exoelectrogen (55.2% of Geobacter) and TCP-degrading microbe (7.1% of Thauera) on the cathode biofilm as well as 61.8% of Pseudomonas in the culture solution. This study provides a promising strategy for synergic degradation of recalcitrant contaminants by intimate-coupling of MFC and photocatalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要