WeChat Mini Program
Old Version Features

Cloud-agnostic Architectures for Machine Learning Based on Apache Spark

Advances in Engineering Software(2021)

Eotvos Lorand Res Network ELKH

Cited 7|Views21
Abstract
Reference architectures for Big Data, machine learning and stream processing include not only recommended practices and interconnected building blocks but considerations for scalability, availability, manageability, and security as well. However, the automated deployment of multi-VM platforms on various clouds leveraging on such reference architectures may raise several issues. The paper focuses particularly on the widespread Apache Spark Big Data platform as the baseline and the Occopus cloud-agnostic orchestrator tool. The set of new generation reference architectures are configurable by human-readable descriptors according to available resources and cloud-providers, and offers various components such as Jupyter Notebook, RStudio, HDFS, and Kafka. These pre-configured reference architectures can be automatically deployed even by the data scientist on-demand, using a multi-cloud approach for a wide range of cloud systems like Amazon AWS, Microsoft Azure, OpenStack, OpenNebula, CloudSigma, etc. Occopus enables the scaling of cluster-oriented components (such as Spark) of the instantiated reference architectures. The presented solution was successfully used in the Hungarian Comparative Agendas Project (CAP) by the Institute for Political Science to classify newspaper articles.
More
Translated text
Key words
Reference architectures,Big data,Artificial intelligence,Machine learning,Cloud computing,Orchestration,Distributed computing,Stream processing,Spark
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined