Systematic Evaluation Of Management Measure Effects On The Water Environment Based On The Dpsir-Tapio Decoupling Model: A Case Study In The Chaohu Lake Watershed, China

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 17|浏览16
暂无评分
摘要
Watershed management measures have been widely implemented worldwide to reduce the water quality deterioration in rivers and lakes, which continue to face increasing stresses from human activities. Due to the complexity of influential factors within watersheds, systematic and reliable approaches are urgently needed to evaluate the effects of watershed managerial practices on scientific applications. In this study, the driving force-pressure-state-impact-response (DPSIR) model integrated by Tapio decoupling analysis was established using 30 quantitative indicators to systematically evaluate their effects on overall watershed water environmental health of Chaohu Lake watershed, China, which was under intensive management practices during 2000-2019. The DPSIR model outcomes revealed that the driving force subsystem with 7 indictors accounted for 34.2% of the watershed water environmental health, in which gross domestic product (GDP), gross industrial output value, crop planting and urbanization contributed a larger proportion. Management measure implementation positively improved the watershed water environmental health, with the second largest proportion being 23.4%. During the study period, a trend of simultaneous improvement in the water quality of the rivers and lakes existed. The Tapio decoupling analysis indicated that watershed water quality was weakly decoupled with socioeconomic development and related pressures, and management responses. The response strategy is the main force in alleviating the pressure from socioeconomic development on the watershed water quality. Overall, the method proposed in this study would improve the understanding of watershed management practice effects and provide guidance for future management measure applications. (C) 2021 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Driving force, Trend analysis, Elastic analysis, Watershed water quality, Chaohu Lake watershed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要