Quinazolinone Dimers As A Potential New Class Of Safer Kv1 Inhibitors: Overcoming Herg, Sodium And Calcium Channel Affinities

BIOORGANIC CHEMISTRY(2021)

引用 0|浏览10
暂无评分
摘要
The discovery of more selective and safer voltage-gated potassium channel blockers is an extremely demanding approach. Designing selective Kv1.5 inhibitors is very challenging as only limited data is available on this target due to a lacking crystal structure for this ion channel receptor. Herein, we synthesized a series of 21 novel quinazolinone dimers 3a-i, 5a-i and 10a-c. We tried to avoid structural features responsible for non-selectivity and for most potassium channel blockers' side effects in our design. In contrast to other works, which lack investigation over wide ranges of potassium and sodium channels, we screened the inhibitory activity of our synthesized compounds over multiple voltage-gated potassium channels, including six different human Kv1 channel subtypes Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels as well as Kv2.1, Kv3.1, Kv4.3, Kv7.2, Kv7.3, Kv10.1, hERG, and Shaker IR. Moreover, these compounds' selectivity was investigated on sodium channels Nav1.2, Nav1.4 and Nav1.5 and calcium channels Cav3.1-Cav3.3. The results revealed two compounds (3a and 3e) with low micromolar Kv1.5 inhibition activity with EC50 values of 5.1 +/- 0.9 mu M and 12.5 +/- 1.1 mu M, respectively. However, at higher concentrations, they also showed inhibitory activity on Kv1.3 and Kv1.1 channels. This might be due to structural similarities between these three Kv1 channel isoforms. Compound 3a shows a slight preference for Kv1.5. Interestingly, they lack any activity on other potassium channels (including hERG), sodium channels, and calcium channels. Our findings recommend quinazolinone dimers with ethylene linker as a potential new class of safer Kv1 inhibitors and a good start for designing more selective and potent Kv1.5 inhibitors.
更多
查看译文
关键词
Quinazolinone dimers, Kv1 inhibitors, hERG
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要