Biomimetic matrix for the study of neuroblastoma cells: A promising combination of stiffness and retinoic acid

Acta Biomaterialia(2021)

引用 4|浏览8
暂无评分
摘要
Neuroblastoma is the third most common pediatric cancer composed of malignant immature cells that are usually treated pharmacologically by all trans-retinoic acid (ATRA) but sometimes, they can spontaneously differentiate into benign forms. In that context, biomimetic cell culture models are warranted tools as they can recapitulate many of the biochemical and biophysical cues of normal or pathological microenvironments. Inspired by that challenge, we developed a neuroblastoma culture system based on biomimetic LbL films of physiological biochemical composition and mechanical properties. For that, we used chondroitin sulfate A (CSA) and poly-L-lysine (PLL) that were assembled and mechanically tuned by crosslinking with genipin (GnP), a natural biocompatible crosslinker, in a relevant range of stiffness (30–160 kPa). We then assessed the adhesion, survival, motility, and differentiation of LAN-1 neuroblastoma cells. Remarkably, increasing the stiffness of the LbL films induced neuritogenesis that was strengthened by the combination with ATRA. These results highlight the crucial role of the mechanical cues of the neuroblastoma microenvironment since it can dramatically modulate the effect of pharmacologic drugs. In conclusion, our biomimetic platform offers a promising tool to help fundamental understanding and pharmacological screening of neuroblastoma differentiation and may assist the design of translational biomaterials to support neuronal regeneration.
更多
查看译文
关键词
Tumor-like ECM,Rigidity,Retinoic acid,Neuritogenesis,Genipin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要