Decoherence Effects in a Three-Level System under Gaussian Process

arxiv(2022)

引用 1|浏览1
暂无评分
摘要
When subjected to a classical fluctuating field characterized by a Gaussian process, we examine the {purity} and coherence protection in a three-level quantum system. This symmetry of the three-level system is examined when the local random field is investigated further in the noiseless and noisy regimes. In~particular, we consider fractional Gaussian, Gaussian, Ornstein--Uhlenbeck, and~power law noisy regimes. We show that the destructive nature of the Ornstein--Uhlenbeck noise toward the symmetry of the qutrit to preserve encoded {purity and coherence} remains large. Our findings suggest that properly adjusting the noisy parameters to specifically provided values can facilitate optimal extended {purity and coherence} survival. Non-vanishing terms appear in the final density matrix of the single qutrit system, indicating that it is in a strong coherence regime. Because~of all of the Gaussian noises, monotonic decay with no revivals has been observed in the single qutrit system. In~terms of coherence and information preservation, we find that the current qutrit system outperforms systems with multiple qubits or qutrits using purity and von Neumann entropy. A~comparison of noisy and noiseless situations shows that the fluctuating nature of the local random fields is ultimately lost when influenced using the classical Gaussian noises
更多
查看译文
关键词
coherence,three-level system,classical fluctuating field,Gaussian process,purity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要