Fluorescent Semiconductor Nanorods For The Solid-Phase Polymerase Chain Reaction-Based, Multiplexed Gene Detection Of Mycobacterium Tuberculosis

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 3|浏览5
暂无评分
摘要
The spread of infectious diseases with significantly high mortality rates can wreak devastating damage on global health systems and economies, underscoring the need for better disease diagnostic platforms. Solid-phase polymerase chain reaction (SP-PCR) potentially combines the advantages of conventional PCR-based diagnostics with the capability of multiplexed detection, given that the spatial separation between primers circumvents unwanted primer-primer interactions. However, the generally low efficiency of solid-phase amplification results in poor sensitivity and limits its use in detection schemes. We present an SP-PCR-based, multiplexed pulldown fluorescence assay for the detection of Mycobacterium tuberculosis (MTB), utilizing highly fluorescent oligonucleotide-functionalized CdSe/CdS and CdSe1-xSx/CdS nanorods (NRs) as multicolor hybridization probes. The large surface area of the NRs allows for their easy capture and pulldown, but without contributing significantly to the interparticle photon reabsorption when clustered at the pulldown sites. The NR nanoprobes were specifically designed to target the hotspot regions of the rpoB gene of MTB, which have been implicated in resistance to standard rifampicin treatment. The implementation of the semiconductor NRs as photostable multicolor fluorophores in a multiplexed SP-PCR-based detection scheme allowed for the identification of multiple hotspot regions with sub-picomolar levels of sensitivity and high specificity in artificial sputum. While this work demonstrates the utility of semiconductor NRs as highly fluorescent chromophores that can enable SP-PCR as a sensitive and accurate technique for multipathogen diagnostics, the flexible surface chemistry of the NRs should allow them to be applicable to a wide variety of detection motifs.
更多
查看译文
关键词
semiconductor nanorods, solid phase, polymerase chain reaction, multiplex, fluorescence, gene detection, bioassays
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要