Throughput Maximization of UAV Networks

IEEE/ACM Transactions on Networking(2022)

引用 31|浏览45
暂无评分
摘要
AbstractIn this paper we study the deployment of multiple unmanned aerial vehicles (UAVs) to form a temporal UAV network for the provisioning of emergent communications to affected people in a disaster zone, where each UAV is equipped with a lightweight base station device and thus can act as an aerial base station for users. Unlike most existing studies that assumed that a UAV can serve all users in its communication range, we observe that both computation and communication capabilities of a single lightweight UAV are very limited, due to various constraints on its size, weight, and power supply. Thus, a single UAV can only provide communication services to a limited number of users. We study a novel problem of deploying $K$ UAVs in the top of a disaster area such that the sum of the data rates of users served by the UAVs is maximized, subject to that (i) the number of users served by each UAV is no greater than its service capacity; and (ii) the communication network induced by the $K$ UAVs is connected. We then propose a $\frac {1-1/e}{\lfloor \sqrt {K} \rfloor }$ -approximation algorithm for the problem, improving the current best result of the problem by five times (the best approximation ratio so far is $\frac {1-1/e}{5(\sqrt {K} +1)}$ ), where $e$ is the base of the natural logarithm. We finally evaluate the algorithm performance via simulation experiments. Experimental results show that the proposed algorithm is very promising. Especially, the solution delivered by the proposed algorithm is up to 12% better than those by existing algorithms.
更多
查看译文
关键词
Approximation algorithms, Unmanned aerial vehicles, Throughput, Base stations, Computer science, IEEE transactions, Urban areas, UAV networks, emergent communication, connected maximum throughput problem, approximation algorithms, distributed resource allocation and provisioning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要