Hemodynamic Modeling Of The Circle Of Willis Reveals Unanticipated Functions During Cardiovascular Stress

JOURNAL OF APPLIED PHYSIOLOGY(2021)

引用 5|浏览3
暂无评分
摘要
The circle of Willis (CW) allows blood to be redistributed throughout the brain during local ischemia; however, it is unlikely that the anatomic persistence of the CW across mammalian species is driven by natural selection of individuals with resistance to cerebrovascular disease typically occurring in elderly humans. To determine the effects of communicating arteries (CoAs) in the CW on cerebral pulse wave propagation and blood flow velocity, we simulated young, active adult humans undergoing different states of cardiovascular stress (i.e., fear and aerobic exercise) using discrete transmission line segments with stress-adjusted cardiac output, peripheral resistance, and arterial compliance. Phase delays between vertebrobasilar and carotid pulses allowed bidirectional shunting through CoAs: both posteroanterior shunting before the peak of the pulse waveform and anteroposterior shunting after internal carotid pressure exceeded posterior cerebral pressure. Relative to an absent CW without intact CoAs, the complete CW blunted anterior pulse waveforms, although limited to 3% and 6% reductions in peak pressure and pulse pressure, respectively. Systolic rate of change in pressure (i.e., partial derivative P/partial derivative t) was reduced 15%-24% in the anterior vasculature and increased 23%-41% in the posterior vasculature. Bidirectional shunting through posterior CoAs was amplified during cardiovascular stress and increased peak velocity by 25%, diastolic-to-systolic velocity range by 44%, and blood velocity acceleration by 134% in the vertebrobasilar arteries. This effect may facilitate stress-related increases in blood flow to the cerebellum (improving motor coordination) and reticular-activating system (enhancing attention and focus) via a nitric oxide-dependent mechanism, thereby improving survival in fight-or-flight situations.NEW & NOTEWORTHY Hemodynamic modeling reveals potential evolutionary benefits of the intact circle of Willis (CW) during fear and aerobic exercise. The CW equalizes pulse waveforms due to bidirectional shunting of blood flow through communicating arteries, which boosts vertebrobasilar blood flow velocity and acceleration. These phenomena may enhance perfusion of the brainstem and cerebellum via nitric oxide-mediated vasodilation, improving performance of the reticular-activating system and motor coordination in survival situations.
更多
查看译文
关键词
cerebral blood flow, cerebral perfusion, communicating arteries, pulse wave propagation, reduced-order models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要