A Mechanistic Study of Drug Mass Transport from Supersaturated Solutions Across PAMPA Membranes

Journal of Pharmaceutical Sciences(2022)

引用 8|浏览1
暂无评分
摘要
There is an increasing shift from dissolution testing to dissolution-permeation testing of formulations during formulation development and this has led increasing application of permeability measurements using parallel artificial membrane permeability assay (PAMPA) membranes. However, there is a lack of thorough analysis of the impact of variabilities in the PAMPA setup on the mass flow rate outcomes, particularly for complex solubility-enabling formulations. In this study, we investigated the impact of amorphous drug-rich nanodroplets, formed in supersaturated solutions by liquid-liquid phase separation, on membrane transport by measuring mass flow rate across PAMPA membranes. In addition, we explored the impact of PAMPA variants such as lipid composition, hydrophobicity and pore size of the filter support, as well as receiver sink properties on membrane mass flow rates of solutions containing amorphous nanodroplets. Filter properties and lipid composition did not show a notable influence on the mass flow rates for lipophilic molecules, while a marked impact was observed for hydrophilic molecules. High sink conditions in the receiver compartment, arising from addition of micellar surfactant, altered the membrane integrity for lipid-impregnated hydrophilic membranes. In contrast, no such effect was observed for a hydrophobic filter support. Membrane integrity tests also suggested that monitoring water transport may be an improved approach over using Lucifer yellow. Furthermore, high sink conditions in the receiver compartment resulted in an increase in the overall mass flow rate. This was due to the effect of asymmetric conditions, generated across the membrane, on mass transport kinetics. Linearity between mass flow rate and donor concentration was observed until the donor concentration reached the amorphous solubility. Above the amorphous solubility, a gradual increase in mass flow rate was observed i.e., with an increasing number of nanodroplets in the solution. This was attributed to decrease in the permeability barrier across unstirred water layer due to reduction of the concentration gradient as nanodroplets dissolved to replenish absorbed drug. Observations made in this study provide insights into the mechanisms associated with mass transport of supersaturated solutions across PAMPA membranes, which are critical for improved evaluation of enabling formulations.
更多
查看译文
关键词
Supersaturation,Phase separation,Permeability,Passive diffusion,Drug transport,Lipids,Membrane transport,In vitro model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要