Spatiotemporal information conversion machine for time-series prediction

arxiv(2023)

引用 0|浏览5
暂无评分
摘要
Making predictions in a robust way is a difficult task only based on the observed data of a nonlinear system. In this work, a neural network computing framework, the spatiotemporal information conversion machine (STICM), was developed to efficiently and accurately render a multistep-ahead prediction of a time series by employing a spatial-temporal information (STI) transformation. STICM combines the advantages of both the STI equation and the temporal convolutional network, which maps the high-dimensional/spatial data to the future temporal values of a target variable, thus naturally providing the prediction of the target variable. From the observed variables, the STICM also infers the causal factors of the target variable in the sense of Granger causality, which are in turn selected as effective spatial information to improve the prediction robustness of time-series. The STICM was successfully applied to both benchmark systems and real-world datasets, all of which show superior and robust performance in multistep-ahead prediction, even when the data were perturbed by noise. From both theoretical and computational viewpoints, the STICM has great potential in practical applications in artificial intelligence (AI) or as a model-free method based only on the observed data, and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine learning.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要